Recyclization of 2-Methoxy-5-morpholino-1,3-oxazole-4carbonitrile by Benzylamine, Phenethylamine, and Phenylhydrazine

S. A. Chumachenko, O. V. Shablykin, A. N. Vasilenko, and V. S. Brovarets

Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 1, Kyiv, 02660 Ukraine
e-mail: brovarets@bpci.kiev.ua

Received August 20, 2012

Abstract—Reaction of 2-methoxy-5-morpholino-1,3-oxazole-4-carbonitrile with benzylamine, phenethylamine and phenylhydrazine results in the new substituted 5-amino-2,3-dihydro-1*H*-imidazol-2-ones.

DOI: 10.1134/S1070363213090144

It is known that 2-alkyloxy- and 2-aryloxybenzo-xazoles react readily with aliphatic amines to give 2-aminobenzoxazole derivatives [1–3]. As 2-alkyl(aryl)-substituted 5-aminodialkyl-1,3-oxazole-4-carbonitriles are stable to the action of nitrogen nucleophiles [4], using this reaction makes commercially available 2-methoxy-5-morpholino-1,3-oxazole-4-carbonitrile I [5] a promising synthone for the synthesis of novel diaminooxazole derivatives, exhibiting a wide range of biological activity [6–8]. However, secondary aliphatic amines did not react with I even in boiling organic solvents. In the case of primary aliphatic amines, hydrazine, and methylhydrazine, under the same conditions a complex mixture of products was formed, and we failed to isolate individual compounds from it.

Only in the cases of oxazole I interaction with benzylamine, phenethylamine and phenylhydrazine, it was possible to isolate individual products from the mixture containing more than 6 substances (according to GC–MS data). The optimal reaction conditions were boiling the starting materials for 3 h in the *n*-butanol—water mixture (95:5) at the reagents ratio of 1:1.1. Under such conditions, the substituted 5-amino-4-[(morpholin-4-yl)carbonyl]-2,3-dihydro-1*H*-imidazol-2-ones **Va–Vc** were isolated with moderate yields.

A possible mechanism of the formation of compounds V involved substitution of the methoxy group with the nitrogen nucleophile, oxazole ring opening by the action of water, and subsequent cyclization to form

$$MeO \longrightarrow CN \qquad RNH_2 \qquad RNH_2 \qquad RHN \longrightarrow O \qquad N \qquad O \qquad NH_2O \qquad$$

II-VI, $R = PhCH_2(\mathbf{a})$, $Ph(CH_2)_2(\mathbf{b})$, $PhNH(\mathbf{c})$.

2-imidazolone **IV** derivatives or their prototropic forms **V**. Similar behavior of 2-amino-1,3-thiazoles, being rearranged into 2-mercapto-1,3-imidazoles in the presence of bases, has been reported [9, 10].

The complexity of the studied reaction was confirmed by isolating of oxalic acid bisamides $\bf A$ and $\bf B$ with yield of 4–5% after continuous heating of a mixture of compound $\bf I$ with benzylamine and phenethylamine in n-butanol.

The products **Va–Vc** were new representatives of the 5-aminoimidazol-2-ones class. Their composition and structure were confirmed by elemental analysis data and spectroscopic methods including GC–MS. In particular, in the IR spectra of the substituted 5-amino-4-[(morpholin-4-yl)-carbonyl]-2,3-dihydro-1*H*-imidazol-2-ones **Va–Vc** (as compared with that of the starting 2-methoxy-5-morpholino-1,3-oxazole-4-carbonitrile **I**) the

nitrile group signal at 2220-2230 cm⁻¹ [5] disappeared, and the intense absorption bands at 3100-3300 cm⁻¹ appeared, assigned to NH and NH₂ groups. Additionally, the structure of compounds V was confirmed by transformation of imidazol-2-ones Va and Vb into 3-alkyl-5-[(morpholin-4-yl)carbonyl]imidazolidine-2,4-diones VIa and VIb, a well known reaction of aminohydantoines [11, 12]. However, an unambiguous determination of the structure of substituted 5-amino-4-[(morpholin-4-yl)-carbonyl]-2,3-dihydro-1*H*-imidazol-2-ones V and 3-alkyl-5-[(morpholin-4-yl)carbonyl]imidazolidine-2,4-diones VI was performed using the comparative complex (NOESY, COSY, HSQC, HMBC, HSQC, and HMBC) NMR analysis of compounds Va and VIa. The main correlations and assignments of their ¹H and ¹³C signals are shown in Figs. 1 and 2, and full set of the found correlations is given in Tables 1 and 2, respectively.

Cross-peaks in the NOESY spectra of compound \mathbf{Va} (7.27 \leftrightarrow 4.82, 7.27 \leftrightarrow 6.18, 4.82 \leftrightarrow 6.18, and 9.76 \leftrightarrow 3.39) as well as those in the HMBC spectra (4.82 \rightarrow 142.20, 4.82 \rightarrow 151.04, 4.82 \rightarrow 127.57, 4.82 \rightarrow 137.67, 9.76 \rightarrow 151.04, 9.76 \rightarrow 142.20, and 9.76 \rightarrow 91.15) clearly revealed that it contained 2,3-dihydro-1*H*-imidazol-2-one ring with the corresponding set of substituents (Fig. 1). Numerous cross-peaks in the NOESY (7.27 \leftrightarrow 7.33, 7.27 \leftrightarrow 4.56, 5.58 \leftrightarrow 8.51, 5.58 \leftrightarrow 3.68, 5.58 \leftrightarrow 3.78, 5.58 \leftrightarrow 3.41, and 5.58 \leftrightarrow 3.63) and HMBC (4.56 \rightarrow 157.42, 4.56 \rightarrow 163.62,

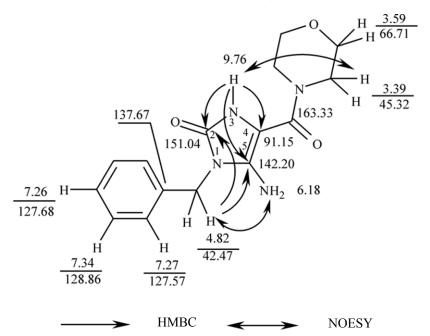


Fig. 1. Main correlations and the signals assignments (ppm) in the ^{1}H and ^{13}C NMR spectra of ${\bf Va}$.

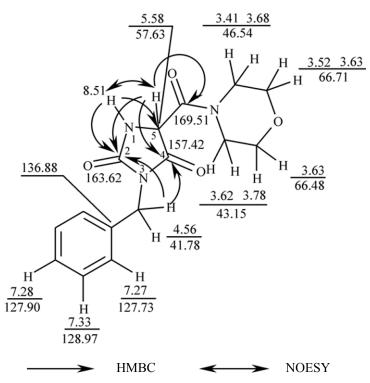


Fig. 2. Main correlations and the signals assignments (ppm) in the ¹H and ¹³C NMR spectra of VIa.

 $4.56 \rightarrow 127.73, 4.56 \rightarrow 136.88, 8.51 \rightarrow 163.62, 8.51 \rightarrow 157.42, 8.51 \rightarrow 57.63, 5.58 \rightarrow 163.62, 5.58 \rightarrow 157.42,$ and $5.58 \rightarrow 169.51$) spectra of **VIa** reliably indicated that its molecule contained imidazolidine-2,4-dione system with benzyl and (morpholin-4-yl)carbonyl substituents (Fig. 2). It should be noted that in the HMBC spectrum of compound **VIa** in the region of morpholine moiety resonance a complex poorly resolved pattern was observed making the signal assignment somewhat

sophisticated, however, that part of the spectrum was not of primary importance for the structure elucidation.

Thus, we demonstrated a new use of the substituted 2-methoxy-1,3-oxazole-4-carbonitriles for synthesis of 5-aminoimidazol-2-ones; the screening of such products for biological activity will likely reveal prospective regulatory compounds [13, 14].

Table 1. Correlations found in the COSY, NOESY, HSQC, and HMBC NMR spectra of compound Va^a

δ_H,ppm	δ_{H} , ppm		δ _С , м. д.		
	COSY	NOESY	HSQC	HMBC	
7.26	7.34	7.34	127.68	127.57	
7.34	7.26, 7.27	7.26, 7.27	128.86	128.86, 137.67	
7.27	7.34, 4.82	7.34, 4.82, 6.18	127.57	126.68, 126.57, 42.47	
4.82	7.27	7.27, 6.18	42.47	142.20, 151.04, 127.57, 137.67	
6.18	_	7.27, 4.82	_	91.15	
9.76	_	3.39	_	151.04, 142.20, 91.15	
3.39	3.59	3.59, 9.76	45.32	45.32, 163.33	
3.59	3.39	3.39	66.71	66.71	

^a The signals assignments for compound **Va** are shown in Fig. 1.

δ_{H}, ppm	δ _H , ppm		δ _C , ppm	
	COSY	NOESY	HSQC	НМВС
7.28	7.33	7.33	127.90	127.73
7.33	7.28, 7.27	7.28, 7.27	128.97	128.97, 136.88
7.27	7.33, 4.56	7.33, 4.56	127.73	127.90, 127.73, 41.78
4.56	7.27	7.27	41.78	157.42, 163.62, 127.73, 136.88
8.51	5.58	5.58	-	163.62, 157.42, 57.63
5.58	8.51	8.51, 3.68, 3.78, 3.41, 3.63	57.63	163.62, 157.42, 169.51
3.41	3.68, 3.63, 3.52	3.68, 3.63, 3.52	46.54	-
3.68	3.41, 3.63, 3.52	3.41, 3.63, 3.52	46.54	-
3.52	3.41, 3.63, 3.68	3.41, 3.63, 3.68	66.71	-
3.63	3.41, 3.52, 3.68	3.41, 3.52, 3.68	66.71	_
3.62	3.78, 3.63	3.78, 3.63	43.15	-
3.78	3.62, 3.63	3.62, 3.63	43.15	_
3.63	3.62, 3.78	3.62, 3.78	66.48	-

Table 2. Correlations found in the COSY, NOESY, HSQC and HMBC NMR spectra of compound VIa^a

EXPERIMENTAL

IR spectra of the compounds in the form of KBr pellets were recorded with Vertex 70 instrument. ¹H and ¹³C NMR spectra of DMSO-d₆ solutions were recorded with Bruker AVANCE DRX-500 spectrometer operating at 500 and 125 MHz, respectively, TMS being used as internal standard. GC-MS spectra were recorded with HPLC Agilent 1100 Series liquid chromatography-mass spectrometry system equipped with a diode array with an Agilent LC\MSD SL mass selective detector. Experimental conditions were as follows: Zorbax SB-C18 column, 1.8 μ m \times 4.6 \times 15 mm (PN 821975-932); solvent A: acetonitrile-water (95:5), 0.1% trifluoroacetic acid; solvent B: 0.1% aqueous trifluoroacetic acid; eluent flow 3 ml min⁻¹, injected volume 1 µl, UV detectors – 215, 254, and 285 nm; chemical ionization at atmospheric pressure (APCI), scan range m/z 80–1000. Melting points were measured with Fisher-Johns instrument.

2-Methoxy-5-morpholino-1,3-oxazole-4-carbonitrile I was prepared as described in [5].

N-Substituted 5-amino-4-[(morpholin-4-yl)carbonyl]-2,3-dihydro-1*H*-imidazol-2-ones (Va–Vc). The corresponding amine or phenylhydrazine (5.5 mmol)

was added to a suspension of 1.05 g (5 mmol) of compound **I** in 10 ml of *n*-butanol. The reaction mixture was refluxed for 3 h, and then kept for 12 h at 20-25°C. Precipitate formed was filtered off, washed with *n*-butanol, and recrystallized from ethanol.

5-Amino-1-benzyl-4-[(morpholin-4-yl)carbonyl]-2,3-dihydro-1*H***-imidazol-2-one (Va). Yield 28%, mp 210–212°C. IR spectrum, ν, cm⁻¹: 1633 (C=O), 1715 (C=O), 3032–3396 (NH, NH₂). Found, %: C 59.46; H 6.15; N 18.36. C₁₅H₁₈N₄O₃. Calculated, %: C 59.59; H 6.00; N 18.53.** *M* **302.**

5-Amino-4-[(morpholin-4-yl)carbonyl]-1-(2-phenylethyl)-2,3-dihydro-1*H***-imidazol-2-one (Vb).** Yield 37%, mp 193–195°C. IR spectrum, v, cm⁻¹: 1634 (C=O), 1710 (C=O), 3128–3383 (NH, NH₂). ¹H NMR spectrum, δ, ppm: 2.84 t (2H, CH₂, $^3J_{HH}$ 7.6 Hz), 3.40–3.47 m (4H, 2CH₂, morpholine), 3.55–3.61 m (4H, 2CH₂, morpholine), 3.76 t (2H, CH₂, $^3J_{HH}$ 7.6 Hz), 6.18 s (2H, NH₂), 7.20–7.32 m (5H, C₆H₅), 9.65 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 34.29, 40.54, 45.30, 66.69, 90.99, 126.83, 128.80, 129.27, 138.75, 142.17, 150.74, 163.36. Found, %: C 60.46; H 6.19; N 17.96. C₁₆H₂₀N₄O₃. Calculated, %: C 60.75; H 6.37; N 17.71. *M* 316.

^a The signals assignments for compound **VIa** are shown in Fig. 2.

5-Amino-4-[(morpholine-4-yl)carbonyl]-1-(phenylamino)-2,3-dihydro-1*H***-imidazol-2-one (Vc).** Yield 21%, mp 229–231°C. IR spectrum, ν, cm⁻¹: 1644 (C=O), 1707 (C=O), 3056–3444 (NH, NH₂). ¹H NMR spectrum, δ, ppm: 3.40–3.45 m (4H, 2CH₂, morpholine), 3.60–3.67 m (4H, 2CH₂, morpholine), 5.98 s (2H, NH₂), 6.57–6.63 m (2H, C₆H₅), 6.80–6.87 m (1H, C₆H₅), 7.17–7.24 m (2H, C₆H₅), 8.64 s (1H, NH), 9.80 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 45.36, 66.71, 88.55, 113.02, 120.45, 129.42, 141.80, 147.74, 149.77, 163.23. Found, %: C 55.56; H 5.39; N 23.01. C₁₄H₁₇N₅O₃. Calculated, %: C 55.44; H 5.65; N 23.09. *M* 303.

3-Alkyl-5-[(morpholine-4-yl)carbonyl]imidazolidine-2,4-diones (VIa, VIb). A solution of 2 mmol of compound Va or Vb in 10 ml of acetic acid was refluxed for 2 h upon stirring. After cooling, the solvent was removed under vacuum. The precipitate was washed with a small amount of water and recrystallized from ethanol.

3-Benzyl-5-[(morpholine-4-yl)carbonyl]imidazolidine-2,4-dione (VIa). Yield 82%, mp 151–153°C. IR spectrum, ν, cm⁻¹: 1649 (C=O), 1719 (C=O), 1786 (C=O), 3074–3294 (NH). Found, %: C 59.56; H 5.78; N 14.01. C₁₅H₁₇N₃O₄. Calculated, %: C 59.40; H 5.65; N 13.85. *M* 303.

5-[(Morpholine-4-yl)carbonyl]-3-(2-phenylethyl)-**imidazoline-2,4-dione (VIb).** Yield 86%, mp 127–129°C. IR spectrum, v, cm⁻¹: 1631 (C=O), 1711 (C=O), 1771 (C=O), 3162–3222 (NH). ¹H NMR spectrum, δ, ppm: 2.81 br.s (2H, CH₂), 3.63–3.72 m (10H, 4CH₂, morpholine, CH₂), 5.47 s (1H, CH), 7.19–7.28 m (5H, C₆H₅), 8.40 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 33.80, 40.56, 43.11, 46.49, 57.49, 66.48, 66.71, 126.87, 128.90, 129.14, 138.51, 157.38, 163.44, 169.33. Found, %: C 60.48; H 6.20; N 13.15. C₁₆H₁₉N₃O₄. Calculated, %: C 60.56; H 6.03; N 13.24. *M* 317.

N,*N*'-Dialkylethanediamides (A, B). The corresponding amine (5.5 mmol) was added to a suspension of 1.05 g (5 mmol) of compound I in 10 ml of *n*-butanol. The mixture was refluxed for 3 h and then kept for 12 h at 20–25°C. The precipitate formed was filtered off. The mother liquor was additionally refluxed for 24 h and cooled to room temperature. The precipitate formed was washed with a small amount of water and recrystallized from ethanol.

N,*N*'-Dibenzylethanediamide (A). Yield 5%, mp 208–210°C (213–215°C [15], 221–222°C [16]). IR spectrum, v, cm⁻¹: 1654 (C=O), 3288 (NH). ¹H NMR

spectrum, δ, ppm: 4.33 d (4H, 2CH₂, ${}^3J_{\rm HH}$ 2.4 Hz), 7.21–7.33 m (10H, 2C₆H₅), 9.31 t (2H, 2NH, ${}^3J_{\rm HH}$ 6.2 Hz). 13 C NMR spectrum, δ_C, ppm: 42.91, 127.39, 127.85, 128.77, 139.21, 160.62. Found, %: C 71.48; H 6.10; N 10.25. C₁₆H₁₆N₂O₂. Calculated, %: C 71.62; H 6.01; N 10.44. M 268.

N,*N*'-Bis(2-phenylethyl)ethanediamide (B). Yield 4%, mp 181–183°C (184–185°C [17], 186–188°C [18]). IR spectrum, ν, cm⁻¹: 1654 (C=O), 3307 (NH). ¹H NMR spectrum, δ, ppm: 2.79 t (4H, 2CH₂, $^3J_{\rm HH}$ 7.5 Hz), 3.35–3.40 m (4H, 2CH₂), 7.18–7.33 m (10H, 2C₆H₅), 8.75 t (2H, 2NH, $^3J_{\rm HH}$ 5.8 Hz). ¹³C NMR spectrum, δ_C, ppm: 35.08, 40.06, 126.63, 128.81, 129.05, 139.58, 160.33. Found, %: C 72.78; H 6.97; N 9.55. C₁₈H₂₀N₂O₂. Calculated, %: C 72.95; H 6.80; N 9.45. *M* 296.

REFERENCES

- Koever, J., Timar, T., and Tompa, J., Synthesis, 1994, no. 11, p. 1124.
- 2. Koever, J., Szilagyi, L., Antus, S., Tompa, J., and Gunda, T., *Heterocycl. Commun.*, 2002, vol. 8, no. 3, p. 237.
- 3. Kuroyanagi, J.-I., Kanai, K., Horiuchi, T., Takeshita, H., Achiwa, I., Kawakami, K., Yoshida, K., Kobayashi, Sh., and Nakamura, K., *Chem. Pharm. Bull.*, 2011, vol. 59, no. 3, p. 341.
- 4. Kozachenko, A.P., Shablykin, O.V., Vasilenko, A.N., and Brovarets, V.S., *Russ. J. Gen. Chem.*, 2010, vol. 80, no. 1, p. 127.
- Drach, B.S., Sviridov, E.P., Kisilenko, A.A., and Kirsanov, A.V., Zh. Org. Khim., 1973, vol. 9, no. 9, p. 1818.
- 6. Niraimathi, V., Suresh, A.J., and Latha, T., *Eur. J. Chem.*, 2011, vol. 8, no. 1, p. S392.
- 7. Ahirwar, M.K. and Shrivastava, S.P., *Eur. J. Chem.*, 2011, vol. 8, no. 2, p. 931.
- 8. Dockendorff, Ch., Aisiku, O., VerPlank, L., Dilks, J.R., Smith, D.A., Gunnink, S.F., Dowal, L., Negri, J., Palmer, M., MacPherson, L., Schreiber, S.L., and Flaumenhaft, R., *Med. Chem. Lett.*, 2012, vol. 3, no. 3, p. 232.
- 9. Hirota, K., Kazaoka, K., and Sajiki, H., *Bioorg. Med. Chem.*, 2003, vol. 11, no. 13, p. 2715.
- 10. Biagi, G., Giorgi, I., Livi, O., Pacchini, F., Salerni, O., and Scartoni, V., *J. Heterocycl. Chem.*, 2005, vol. 42, no. 5, p. 743.
- 11. Belai, I., Tetrahedron Lett., 2003, vol. 44, no. 40, p. 7475.
- 12. Kurz, T. and Widyan, K., *Tetrahedron Lett.*, 2004, vol. 45, no. 38, p. 7049.
- 13. Robinson, R.P., Laird, E.R., Donahue, K.M., Lopresti-Morrow, L.L., Mitchell, P.G., Reese, M.R., Reeves, L.M.,

- Rouch, A.I., Stam, E.J., and Yocum, S.A., *Bioorg. Med. Chem. Lett.*, 2001, vol. 11, no. 9, p. 1211.
- 14. Park, H., Min, K., Kwak, H.-Sh., Koo, K.-D., Lim, D., Seo, S.-W., Choi, J.-U., Platt, B., and Choi, D.-Y., *Bioorg. Med. Chem. Lett.*, 2008, vol. 18, no. 9, p. 2900.
- 15. Mulliez, M., *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 1980, vol. 8, p. 27.
- 16. Vydzhak, R.N. and Panchishin, S.Ya., Russ. J. Gen. Chem., 2008, vol. 78, no. 12, p. 2391.
- 17. Martinez-Martinez, E.J., Padilla-Martinez, I.I., Brito, M.A., Geniz, E.D., Rojas, R.C., Saavedra, J.B.R., Höpfl, H., Tlahuextl, M., and Contreras, R., *J. Chem. Soc., Perkin Trans.* 2, 1998, vol. 2, p. 401.
- 18. Qi, G., Ji, Y.Q., and Juden, Z.M.A., *Tetrahedron*, 2010, vol. 66, no. 23, p. 4195.